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An Extension of the Mode Theory to Periodically

Distributed Parametric Amplifiers with Losses*
K. KUllOKAWA~ AND J. HAMASAKI~

Summary-For the extension of the mode theory of the Iossless THE OPERATOR T@
periodically distributed parametric amplifier to the Iossy case, a

“conjugate circuit” is introduced in this paper. The conjugate circuit
is an imaginary circuit which is obtained in the pass band by replacing The equivalent circuit of the semiconductor diode is
each resistance in the original circuit with the negative resistance of shown in Fig. 1. In this figure, r represents the spread-
the same maguitude. The orthogonality properties between the
modes of the original circuit and those of the conjugate circuit are

ing resistance, which is assumed to be independent of

derived. The power gain and the noise figure of the arnplfier are
the frequency.

calculated, showing the usefulness of this mode theory in accounting The relation between the current

for the spreading resistance of the semiconductor diode. diode and the applied voltage v is

i flowing into the

Fig. i—Equivalent circuit of semiconductor diode.

subscripts 1 and 2 refer to the angular fre-

INTRODUCTION

1

N a previous paper,l an operator To was introduced

for the analysis of the lo~sless periodically distributed

parametric amplifiers. The operator T8 is the prod-

uct of a diagonal matrix expressing the pumping phase l:=[:;::l[::l ‘1’

relation and the T matrix of the basic section of the where the

amplifier. The eigenvectors of Te are called the modes quencies WI and OJZj respectively, and the pumping
of the amplifier, The orthogonality properties among angular frequency COPis assumed to be 01 +w2. Rewriting

the modes were proved, using one of the Manley-Rowe (1) in the form
relations. However, the proof required that the circuit

be lossless. In practical amplifiers the spreading re-

sistance of the semiconductor diode cannot be neg-

lected. Therefore, it is desired to obtain some substi-

tutes for the orthogonal properties among the modes.

For this purpose, a “conjugate circuit” is introduced in

~+{::;, ::~~]

this paper. The orthogonality properties which exist

between the modes of the original circuit and those of

the conjugate circuit are proved, thereby showing that

the mode theory remains useful even when the spread-

ing resistance and the other losses of the circuit are

taken into account. ‘[:; ::IN2)
where I k a unit matrix, and then mult

* Manuscript received by the PGMTT, June 30, 1959; revised
manuscript received, August 28, 1959. f

* Inst. of Industrial Science, University of Tokyo, Chiba Cityz

1 [1
j.olco,

Japan.

jul +

1 K. Kurokawa and J. Hamasaki, ‘tMode theory of lossless I+r
periodically distributed parametric amplifiers, ” IRE TRANS. ON

I

~%

MICROWAVETHEORYAND TECHNIQUES,vol. MTT-7, pp. 360-365;
July, 1959.

–jw2 j- , –jco2cQ

lying by

-1



Kurokawu ad Hamasaki: Periodically Disfribufed Parametric Amplifiers

‘~”
(a) (c) (b)

Fig. 2—Basic section of the amplifier,

from the left, we have
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In (3) we neglect the higher order terms of r which are where the prime notation indicates the values of the

assumed to be small. The COin the first matrix on the (c) side terminals. Since the voltages at the (c) terminals
right hand side of (3) is divided into two parts, each of must be equal,

which is included in the two terminal pair networks (a)

and (b) of the basic section of the amplifier, which is Va’ = Vb’ = V.. (6)

shown in Fig. 2. The relation between the current I. The equation of continuity is
flowing into the remaining circuit (c) and the applied

voltage V. k I.’ = 15’ + ~.. (7)
—.

The voltage and current at each terminal in Fig. 2 Using (4)–(7), we obtain the relation

are, in terms of the incident waves (subscript i) and the

reflected waves (subscript r), B=TA (8)

V. = v’~(ai + a,), V.’ = {ZJ(aie–~@ + a,ej”) between the input vector A and the output vector B of

1 1 the basic section, where

[

a;l -

arl
A==

ai2*

ar2*.

(10)
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Z(J1’
al = ( 2 Lmlw,u

—Y Wlco
2 )

zL12’*

(

2 ,_u,.2i
2

C2=— r W2 co
2 4 )

z = V’Z’01Z02’*
~ {1 +j(w2 - 6JJ,,,] . (11)

Next, we shall consider the n similar circuits con-
nected in cascade. The variable capacitor of each cir-

cuit has the pumping phase lagged by 20P (OP: real)

from that of the preceding one. These circuits are repre-

sented by matrices similar to T except they have
ce–2i0r3, ~e–4i0p . . . in place of c. The pumping phase

does not appear in al, 4rz and Z. Thus we can write the

T matrix of the kth section in the form

IOk–lTIo–@_lj

ever, that the circuit be lossless, and this condition is
not satisfied in the present case. Without the ortho-

gonality properties, the mode theory loses most of its

power. To get the substitutes, we shall introduce a

conjugate circuit.2

The conjugate circuit is an imaginary circuit with 61*,

62*, ZOI’*, ZOZ’* and —r in place of 01, 02, 201’, ZOZ’ and r,

respectively, of the original circuit. Assuming that the

losses are small, we can obtain the conjugate circuit in

the pass band of OJ1and C02by replacing each resistance

in the original circuit by the negative resistance of the

same magnitude. We shall use the symbol H to indi-

cate the complex conjugate transpose of the correspond-

ing matrix for the conjugate circuit.

The T matrix of the basic section of the conjugate

circuit is the matrix with 01*, 82, —al*, —g2* and Z* in

place of 19~,Oz*, al, CTZand Z, respectively, of the T

matrix given by (1 O). Its complex conjugate trans-

posed matrix is

—jw2cZei(@l-g’”J, jw2cZei@l+0Z”j 1

where

re-’~p 0 0 0 q

10 e–iop o ()

1$=1 (12)
10 0 eib () “

L000 eiap1
The output vector of the amplifier is, therefore,

B = (~o”-lT]o–”+l) (10”–2T10–”+2) . . . (IOT18–9 TA

= IomT8%A (13)

where A is the input vector and

To = Ie–lT (14)

as in the previous paper.

CONJUGATE CIRCUIT AND ORTHOGONALITY PROPERTIES

From (13), we see that each eigenvector Ztk of To is

independently transformed by the amplifier into

hk”~O”Ah, where Ah is the eigenvalue of A~. This is the

result which we first obtained in the Iossless case. In

the Iossless case, we had another useful result: there

are orthogonality properties between the modes. Nat-

urally, we wish to prove them. The proof requires, how-

A little manipulation shows that

1
—
WI

o

0

0

0 0 0

1
-— 0 0

WI

1
0 —— 0

W2

0 o~

Since To= 10–~T,

(15)

(16)

(17)

(18)

z The T-matrix of the conjugate circuit is closely related to the
notion of the inverse of the conjugate operator in functional analysis.
For the conjugate operator, the reader is referred to A. E. Taylor,
“Introduction to Functional Analysis, ” John Wiley and Sons, Inc.,
New York, N. Y., ch. 4, 1958. The waveguide directly related to the
conjugate operator has been discussed in A. D. Bresler, G. H. Joshi,

and N. Marcuvitz, “Orthoxonalitv moDerties for modes in passive
and active uniform wave g~ides,’< ~. A’@@. phy~., vol. 29, pp. 794_
799; May, 1958.
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From (16) and (18), we obtain

Fet2-~To = TI%Q–lIi-~T = ~f2-LT = WI;

that is,

~JWT8 = wI. (19)

This is the relation which corresponds to (27) in the

previous paper.1

If A 1 is an eigenvector of the operator To,

(T, – AzI)A$ = 0. (20)

Taking the complex conjugate transpose of the cor.

responding relation for the conjugate circuit, we have

X,(T, – X,1) = o (21)

where ~~ is the complex conjugate transpose of the

eigenvector of the conjugate circuit, and ~k is the com-

plex conjugate of the eigenvalue.

From (19)-(21), the following theorems can be de-

rived~ in a similar way as for the Iossless case (see Ap-

pendix).

Theorem 1: There is always an eigenvalue h~ of Te, cor-

responding to an eigenvalue ~k of To, such that ~k = l/~k.

Theorem 2: If .l# k, then A t and ~k are orthogonal in the

sense that

@-lAt = O. (22)

Theorem 3: The corresponding modes ~k and Ak are

not orthogonal in the above sense; ;.e.,

&~-lAh + ~. (23)

In the case of Iossless amplifiers, the conjugate and

original circuits are identical in the pass band of U1 and

W. Thus, ~k is the complex conjugate transpose of the

eigenvector of To with the eigenvalue l/&*, leading to

the same result obtained in the previous paper.

A, =

For the sake of convenience, we normalize the mode

amplitudes so that we can rewrite (22) and (23) in the

form

.&&lA~ = l?k~ (24)

where & is the Kronecker delta.

An arbitrary vector can be expressed as a sum of

eigenvectors:

A = ~ cx~A~.

Multiplying by ~&’ from the left and using (24), we

have

ak = A-k fl-lA. .

Therefore, for an arbitrary vector A, we obtain

A = ~ Ah(i&i-lA). (25)

Multiplying by Te’ from the left, we lhave

To”If = ~ hkfi&t,@i&lA). (26)

Since A is an arbitrary vector, then

To” = ~ ik”Ak -&fkl<, (27)

If n=l,

To = ~ hkAk- &~-l. (28)

This is the spectral representation of the operator To.

POWER GAIN OF THE AMPLIFIER

To obtain the expressions for the power gain of the

amplifier, we need the solutions of the eigenvalue prob-

lem of the operator Te. We assume that

8D = 01 + 92* + A6. (29)

All the eigenvalues and the corresponding eigen-

vectors can be obtained by the method of perturbation.

To the first order of approximation, they are

X2 = (1 + U1+ jA6)ei(a81+o~*}
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A3 =

where
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( u~ + 52
A$= l-—–––– )~@’a*-81)

2
9

(al — (T2

e= )—–jAO
2

The first and third modes are the forward waves

traveling from the input to the output. – (uI +uz)/2 in

the eigenvalues roughly represents the attenuation due

to the spreading resistance. On the other hand, 3 roughly

)14=(i+a2 _ j@)e-W’382*)
1

–j.2 —
dOJ2

2 sin 202*

January

(30)

modes are considerab~y influenced by the spreading

resistance if al #uz.

The second and fourth modes are the backward

waves, which remain almost unaffected. The magnitude

of the eigenvalues are greater than unity, which means

that these backward waves attenuate with propagation.

Replacing 61, 9,*, Ai9, al, ut and Z in (30) by 131*,02,

At?”, —(71*, —UZ* and Z*, respective y, and interchang-

ing the subscripts k = 1 and 3, we have the eigenvectors

of the conjugate circuit. The complex conjugate trans-

poses of the eigenvectors multiplied by appropriate nor-

malization COnStantS give ~k’s ~

2 i:,,.%’+‘ + “’v%i ‘i’”]’
(32)

represents the amplification due to the variable ca- Eqs. (30) and (32) satisfy the orthogonality theorems

pacitor. If the real part of (al +uz)/2 is larger than the (24) to the first order of approximation.

real part of 6, no net amplification takes place. It is Substituting (30) and (32) in (26) and then using (1 3),

worth noting that the components of the first and third we obtain four equations.
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Fig. 3—Input and output conditions of the amplifier.

{b,’* == e~nOP ~J~aTz* + . . “1. (33)

From the input and output conditions shown in Fig. 3,

we have

~’
ail := e~l + r~larl, a~2* = I’G2*ar2 *

201+ 2.1
b,l = rblbil, b,z* = r5’*b;z* (34)

where the I“s are the reflection coefficients:

z. – 20 Zb – ZO
r. ~ rb =

2. +2.’
(35)

zb + ZO

There are altogether eight equations with eight un-

known quantities a,l, aiz*, . . . , b,l, &z*. The simul-

taneous equations can be solved by the standard method

of algebra. Neglecting the higher-order terms of ti and

of the mfiection coefficients, we have, for example,

/?,, +

Substituting (36) in (37), we can obtain the power gain

in its explicit form. For simplicity, we neglect the imag-
inary part of 01, 62, 8 and ZO1, as well as the differellce

between u, and a, (a =Ul =UZ). Furthermore, if the I“s

are all zero, (37) becomes

Go= {cosh2n6+~]sinb2 *}e--ZU. (38)

If r.lrbl and ra2*rb2* are small but @ Zerol

4 Re Zd

~_GO I Zln+z.lp
Re {ZOI(l– I rbl 12+rbl”–rbl*))

(39)
(1 – <Go Re R)’+ (<Go Im R)’

For a numerical example, let

Zrll’ = 202’ == 30Q I CI = 3.5w.LF, (O= 5 I.WF

WI + 0J2+ 670 mc, V=lfl, ~b= 16.

Then, from (11) and (31), we obtain

& = 0.11 (r = 0.006.

——.

We ckfine the power gain G of the amplifier to be the Inserting these values in (38), we get

ratio of the power dissipated in the load at U1 to the
Go = 8.7 db for AO = O

available power from the generator:
Go = 5.7 db fOr A@ == 6°

{
‘(j– l~b,l’G= /b112Rej-@ which can be compared with the second experimental

result by Engelbrecht.3 If I R{ = 0.1, because of the de-

+ I’bl
}/

I cd]’ 3 R. S. Engelbrecht, “Nonlinear-Reactance (Parametric) Travel-
– ~b,*) . (37) illg-wave Amplifiers for UHF,”

4 Re Zal
Presented at the 1959 Solid-State

Circuits Conf., Philadelphia, Pa., February, 1959.
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9co c

v
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Fig. 4—Equivalent circuit of semiconductor
diode with noise voltages,

nominator of (39), G varies from 6.6 db to 11.5 db, Next, we shall consider the amplifier with n sections.

when AO = O, depending on the phase of R. For the rnth section, c is replaced by ce–2@_lJjofl and K

It should be recognized that (38) and (39) are the re- becomes

suits of a three-frequency analysis. If the other side-

bands are capable of propagating, the gain may be re-
18m-lKJ@–?n+l

duced. where

NOISE FIGURE CALCULATION

For the calculation of the noise figure, we must con-

sider the noise voltages el and ez due to the spreading

resistance of the semiconductor diode. On the other

hand, for simplicity, we neglect the losses, hence the

noise generated in the two terminal pair networks (a)

and (b) in Fig. 2.

The equivalent circuit of the diode is shown in Fig. 4.

Replacing VI and vZ* in (2) by V1– el and VZ*– ez* respec-

tively, we have the matrix representation of this equiva-

lent circuit. Using this representation in a similar way

as for (8), we get the relation

B= TA+KN (42)

between the input vector A and the output vector B of

the basic section of the amplifier, where T is given by

(10) and

“ ‘[e:e2 (44)

Therefore, the output vector of the amplifier is

B = (I@TIo-”+l) (IP-2TIO-n+2) . . . (IoTIe–l) TA

+ ~ (I&TI~-”+’) (I@T]o-n+2) . . .
m=1

. (I,mTI,-m)I/’-’KJm+lNmlNm

. IgnTgnA + ~ 10”T%n–mIO–lKJe–m+ lNm, (45)
m=1

where A is the input vector of the amplifier and N~ rep-

resents the matrix N with the noise voltages e~l and

e~z* of the mth diode. Using (27), we rewrite (45) in the

form

:~~e-io2*{’”2’”-’(w’’’)}1
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Substituting (30) and (32) in (46), we obtain where

[(

hl” + h# E Al” — A3”

)

k = Boltzmann’s constant,

bil + e--j%o~ —— ail Af = the noise band width of the amplifier,
2 82

T= standard noise temperature, and

Al”– A# .&l z c

(

T,= the equivalent noise temperature of the spread-

2
j’~ ~—--eieoai+’+...

ICI ing resistance.

J
2AL%30 , , /z

with similar equations for the other components, where
+—

6’ 1c,, c, W@2y - V’%’Z,2’ . (50)
U2

10–1KJ6–”+lNm =

um,2*

m,2*

(48)

1 I_

{

C*

~ jwz~ZOz’*e–lO’ ~ e(~-2J10fle~, + coe–imO~e~,*
11

For simplicity, hereafter we shall confine ourselves to In this case,

the case in which we obtained (38): c =u1 =~z and the

reflection coefficients are all zero. Then, from (47), the Go+: lA,12n; .

noise output power becomes

‘* + GokTAfATO= bclbcl Dividing NO by GokTAf, we obtain the noise figure Fo.

T, Yzol’wl%+ {( W2 .Z02’
Fo=l+~+—

)
l+——

W2 T 2((! – u) co] Z’1’

(51)

“ {S(’oz+v)(w’’z’’+w’ti’z’” For a numerical example, we use the same values

described in the previous section, and assume that

2Af180
co I c \ .1w2& d-}

T,= T. Then (54) gives
+~

FO = 3.3 db for M = O

FO = 4.5 db for AO == 6°.

“(
A$2 6“

)

APPENDIX
wl~zol’ — — W12Z01’— — Wl@z.zo”

6’ 82 Theorems 1, 2, and 3 wiIl be proved.

2AO170

(

From (21), the determinant of ( ~P – ?vJ) vanishes:

– -j-co I c [ WW2 = <Zol’zo;} ] (49)
W2 det (To – M) = O. (52)
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Since det T~ #0, XJ,#O. From these relations, we have

det (T8 – ~~t) det (f2-’T~) = det (~~fFITo – ~~fl-’Tt)

= det (WI – ~~fl-iT8)

= ‘et ‘Q-’xk’det(tl - “)=00

“f’he final result is

“’(T’-; 1)=0
(53)

From (53), it follows that there is always an eigenvalue

~/hk of To, corresponding to an eigenvalue ~k to 2?0,

(Theorem 1).

We shall use the same subscript for the corresponding

solutions of the eigenvalue problems of the two circuits:

Ah=;. (54)

Multiplying (21) by Q-1T04 t from the right and usi~lg

(19) and (20), we obtain

1-

()
Al–z Ak&lA~ == O. (55)

If At # l/ik, (55) shows that ~&F’lA ~==O. In the llon-

degenerate case, X1# l/~k for k #l. Thus, we obtain the

desired orthogonality relation (Theorem 2):

/i&lA1 = 0, k?+!?. (56)

In the degenerate case, k # 1 does not necessarily y mean

that AI # l/kk. However, we are justified in assuming

(56), for it is always possible to introduce the degenerate

eigenvectors in such a way as to secure the ortho-

gonality.

Next, we expand ~~k+ by the eigenvectors A 1, where

the symbol ~ indicates the complex conjugate transpose:

~~],~ = ~ alAz.

Multiplying by ~&?-l from the left and using (.56), we

have

~k~~+ = ffk& L?-lA~.

Since ~k # 0, the left hand side of the above equation is

not zero. Thus we conclude that (Theorem 3):

&ti-lAk # O. (57)
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Action of a Progressive Disturbance on a Guided

Electromagnetic Wave*
J. C. SIMO~~

1. INTRODUCTION

A.

A

PROBLEM often encountered in wave physics

concerns the interaction of various types of

waves, and the energy transfer from one wave

to another.

In the particular case of waves of the same nature,

‘(modes)’ can be distinguished in such a way that a wave

can be represented as a sum of these modes. Their essen-

tial character is that the energy associated with each

* Original manuscript received by the PGMTT, May, 1959;
revised manuscript received, September 25, 1959.

~ Department de Physique Applique, C. S. F., Orsay, S.0.,
France.

does not vary with time. It is also said that these modes

are not “coupled.” This, for instance, is the case of

waves guided in an electric waveguide, of mechanical

vibration in a bar, and of energy levels in quantum

physics.

Although this possibility of decomposition in “normal

modes” corresponds to particular physical conditions,

it has made it possible to deduce general notions of a

fundamental character essential to the physicist. In the

most general case, the normal modes are said to be

coupled that is the energy passes from one to the other,

so much that this decomposition into normal modes

appears to be indispensable in deducing physical con-

cepts.


