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An Extension of the Mode Theory to Periodically

Distributed Parametric Amplifiers with Losses®
K. KUROKAWA?} anp J. HAMASAKT}

Summary—For the extension of the mode theory of the lossless
periodically distributed parametric amplifier to the lossy case, a
“conjugate circuit” is introduced in this paper. The conjugate circuit
is an imaginary circuit which is obtained in the pass band by replacing
each resistance in the original circuit with the negative resistance of
the same magnitude. The orthogonality properties between the
modes of the original circuit and those of the conjugate circuit are
derived. The power gain and the noise figure of the amplifier are
calculated, showing the usefulness of this mode theory in accounting
for the spreading resistance of the semiconductor diode.

TaE OPERATOR T}

The equivalent circuit of the semiconductor diode is
shown in Fig. 1. In this figure, 7 represents the spread-
ing resistance, which is assumed to be independent of
the frequency.

The relation between the current ¢ flowing into the
diode and the applied voltage v is

Fig. 1—Equivalent circuit of semiconductor diode.

INTRODUCTION

for the analysis of the lossless periodically distributed

parametric amplifiers. The operator Ty is the prod-
uct of a diagonal matrix expressing the pumping phase
relation and the 7" matrix of the basic section of the
amplifier. The eigenvectors of T} are called the modes
of the amplifier. The orthogonality properties among
the modes were proved, using one of the Manley-Rowe
relations. However, the proof required that the circuit
be lossless. In practical amplifiers the spreading re-
sistance of the semiconductor diode cannot be neg-
lected. Therefore, it is desired to obtain some substi-
tutes for the orthogonal properties among the modes.
For this purpose, a “conjugate circuit” is introduced in
this paper. The orthogonality properties which exist
between the modes of the original circuit and those of
the conjugate circuit are proved, thereby showing that
the mode theory remains useful even when the spread-
ing resistance and the other losses of the circuit are
taken into account.

'J:[ N a previous paper,! an operator Ty was introduced
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where the subscripts 1 and 2 refer to the angular fre-
quencies w; and ws, respectively, and the pumping
angular frequency w, is assumed to be w; +ws. Rewriting
(1) in the form

3 C o
Jot —2— 1

Jwico,

I+7r

*

L . ¢ . .
—Jwg — wal 2
]221 7 0 1

c
JwiCa, Jwr— U1

2
- . @
— g ~2—; — jwaco vo*

where [ is a unit matrix, and then multiplying by

( . e
J Jwica, Jeor—
I+

. C*
—jwy — s

2

‘-jwzco



1960 Kurokawa and Hamasaki: Periodically Distributed Parameiric Amplifiers 11

a a’ b b
o— —o0
Z—~ i8 74 Zym je ~Z
O—-
(a) (c) ()]
Fig, 2—Basic section of the amplifier,
from the left, we have
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In (3) we neglect the higher order terms of  which are where the prime notation indicates the values of the
assumed to be small. The ¢, in the first matrix on the (c) side terminals. Since the voltages at the (c) terminals
right hand side of (3) is divided into two parts, each of must be equal,

which is included in the two terminal pair networks (a) , ,

and (b) of the basic section of the amplifier, which is Ve =V =7 (6)
shown in Fig. 2. The relation between the current I,
flowing into the remaining circuit (¢) and the applied
voltage V. is I =1+ I )

The equation of continuity is
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The voltage and current at each terminal in Fig. 2 Using (4)-(7), we obtain the relation
are, in terms of the incident waves (subscript ¢) and the

reflected waves (subscript ), B=TA ®
Vo= ~Zola; + a), V. =ZJ(a:e? + a6 between the input vector 4 and the output vector B of
1 1 the basic section, where
I, = —(a, — a), I = ——(a.,e % — a,e®
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and
Zo/ [ c|?
g1 = ¥ w12602 — W12
4
Zozl* I C ‘2
gy = ¥ w22602 — Wi
4
m
Z= —‘—%ﬁ {1 + j(wr — wr)eor). (11)

Next, we shall consider the # similar circuits con-
nected in cascade. The variable capacitor of each cir-
cuit has the pumping phase lagged by 20, (0,: real)
from that of the preceding one. These circuits are repre-
sented by matrices similar to T except they have
ce~20p ce—4ibp . in place of ¢. The pumping phase
does not appear in o1, 02 and Z. Thus we can write the
T matrix of the kth section in the form

Iok—lTlo—(k—l)

Janvary

ever, that the circuit be lossless, and this condition is
not satisfied in the present case. Without the ortho-
gonality properties, the mode theory loses most of its
power. To get the substitutes, we shall introduce a
conjugate circuit.?

The conjugate circuit is an imaginary circuit with 8,*,
92*, Zo1l*, Zoz'* and —7in place of 01, 02, Z01’, Zoz’ and 7,
respectively, of the original circuit. Assuming that the
losses are small, we can obtain the conjugate circuit in
the pass band of w; and w, by replacing each resistance
in the original circuit by the negative resistance of the
same magnitude. We shall use the symbol ~ to indi-
cate the complex conjugate transpose of the correspond-
ing matrix for the conjugate circuit.

The T matrix of the basic section of the conjugate
circuit is the matrix with 6,*, 8;, —o1*, —¢5* and Z* in
place of 01, 0;* 01, 02 and Z, respectively, of the T'
matrix given by (10). Its complex conjugate trans-
posed matrix is

(1 + oy)erits, —o1, —Jesc ZeiO1=8®) | 007 g1 G102
7 o1 (1 — o0)e 2, —jueZa i GrH0™ | fiocZei(00—00) s)
- Jwic*Zei G0 —Jarc* ZeT IO (1 4 gg) e 20T, —0y
Jeic*Zei@rem — jenyc* Zei =00 o, (1 — gg)eit
where A little manipulation shows that
[e—m: 0 0 0 7o' = o1 (16)
0 e 0 0
Io=| ' (12) where
0 O 6703’ 0 — 1 —_
|.0 0 0 ¢ o 0 0 0
The output vector of the amplifier is, therefore, 1
0 —-— 0 0
o n—1 —n+1 n—2 —n+2) ., . . ~1
B (IovT1s YT " 2T 1y ) (LTI H)TA o1 = w; 1 an
= T Ty 4 (13) 0 0 _— 0
(5]
where A4 is the input vector and ? )
Te = IIT (14) i 0 0 0 ;2'_
as in the previous paper. Since Ty=IT,
a TN -
ConNjuGATE CIrcUIT AND ORTHOGONALITY PROPERTIES To=1I17'T =TIyt = T, (18)

From (13), we see that each eigenvector 4; of T} is
independently transformed by the amplifier into
MemIg Ak, where Ny is the eigenvalue of Ay. This is the
result which we first obtained in the lossless case. In
the lossless case, we had another useful result: there
are orthogonality properties between the modes. Nat-
urally, we wish to prove them. The proof requires, how-

2 The T-matrix of the conjugate circuit is closely related to the
notion of the inverse of the conjugate operator in functional analysis.
For the conjugate operator, the reader is referred to A. E. Taylor,
“Introduction to Funcational Analysis,” John Wiley and Sons, Inc.,
New York, N. Y, ch. 4, 1958. The waveguide directly related to the
conjugate operator has been discussed in A. D. Bresler, G. H. Joshi,
and N. Marcuvitz, “Orthogonality properties for modes in passive
and active uniform wave guides,” J. Appl. Phys., vol. 29, pp. 794~
799; May, 1958.
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From (16) and (18), we obtain
ToQ 1Ty = TI,Q U T = TQ\T = QY
that is,

T 1Ty = QL. (19)
This is the relation which corresponds to (27) in the
previous paper.!

If 4;is an eigenvector of the operator T,

(Ty — MDA = 0. (20)
Taking the complex conjugate transpose of the core
responding relation for the conjugate circuit, we have

21

where A is the complex conjugate transpose of the
eigenvector of the conjugate circuit, and A is the com-
plex conjugate of the eigenvalue.

From (19)-(21), the following theorems can be de-
rived in a similar way as for the lossless case (see Ap-
pendix).

Theorem 1: There is always an eigenvalue A\, of T, cor-
responding to an eigenvalue }s of T, such that Ny =1/Xs.
Theorem 2: If Ik, then A;and 4; are orthogonal in the
sense that

A 014, = 0. (22)
Theorem 3: The corresponding modes A, and A4, are
not orthogonal in the above sense; .e.,

A0t 4, # 0. (23)

In the case of lossless amplifiers, the conjugate and
original circuits are identical in the pass band of w; and
ws. Thus, Ay is the complex conjugate transpose of the
eigenvector of Ty with the eigenvalue 1/\*, leading to
the same result obtained in the previous paper.
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For the sake of convenience, we normalize the mode
amplitudes so that we can rewrite (22) and (23) in the
form

z‘Ikﬂ"lAz = O (24)

where 05 is the Kronecker delta.,
An arbitrary vector can be expressed as a sum of
eigenvectors:

A= ads.

Multiplying by 4,2 from the left and using (24), we
have

ap == AkQ“IA.

Therefore, for an arbitrary vector 4, we obtain

A =D A(d,014). (25)
Multiplying by Te* from the left, we have
T d = D, M A(A, 91 4). (26)
Since 4 is an arbitrary vector, then
Ty = 3 M Ape A1, (27)
If n=1,
To = . Medy A0 (28)

This is the spectral representation of the operator T.

Power GAIN OF THE AMPLIFIER

To obtain the expressions for the power gain of the
amplifier, we need the solutions of the eigenvalue prob-
lem of the operator Ts. We assume that

0, = 6, + 05* + AS. (29)

All the eigenvalues and the corresponding eigen-
vectors can be obtained by the method of perturbation.
To the first order of approximation, they are

Ao = (1 4+ o1 + jAG)eiGor+0%)

]'01 R
—— Vo
2 sin 26, !

Vo1
) Ay = do __c* ’
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s = (1 - ”1_; 7 5) o1 O8—61) = (1 + o3 — jAG)eiCOrHioe)
i _Cil_ i i __69.__. - egop W
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where modes are considerably influenced by the spreading

8o = Vows|c| Z

(5 )
€ = 2 J

8 = 4/ + €.

(31)

The first and third modes are the forward waves
traveling from the input to the output. —(o1-+03)/2 in
the eigenvalues roughly represents the attenuation due
to the spreading resistance. On the other hand, 8 roughly

w =]

- 8o?
A]_ = [
86 + ¢

8o? 6+ ) /‘/wl
@ .
2’ 2sin 26, 55 + € WY

resistance if ;1503

The second and fourth modes are the backward
waves, which remain almost unaffected. The magnitude
of the eigenvalues are greater than unity, which means
that these backward waves attenuate with propagation.

Replacing 6y, 0:%, A8, 01, 02 and Z in (30) by 6%, 65,
Af*, ~o1*, —o9* and Z%*, respectively, and interchang-
ing the subscripts 2=1 and 3, we have the eigenvectors
of the conjugate circuit. The complex conjugate trans-
poses of the eigenvectors multiplied by appropriate nor-
malization constants give 4i's:
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represents the amplification due to the variable ca-
pacitor. If the real part of (o61+03)/2 is larger than the
real part of §, no net amplification takes place. It is
worth noting that the components of the first and third

( —e+ao4/z;,

%vﬁgc \
—_— — —— plp
) AR PR
do
251n20*_(6+e+02) )
2

/s, \/wz]

F177)

—0

32
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Eqgs. (30) and (32) satisfy the orthogonality theorems
(24) to the first order of approximation.

Substituting (30) and (32) in (26) and then using (13),
we obtain four equations.
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Fig. 3—Input and output conditions of the amplifier.
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Substituting (36) in (37), we can obtain the power gain
in its explicit form. For simplicity, we neglect the imag-
inary part of 81, 82, § and Zg, as well as the difference
between ¢; and o3 (¢ =01 =03). Furthermore, if the ['s
are all zero, (37) becomes

A\?
_ Gy = {cosh2 nd 4+ (—) sinh? na} g, (38)
) Ar® Ag®\ 00 Jws ¥ )
bio* = einby —é_ — T j— — e—il)pa“
A 8 5 “1 ; C; If T, and Tee*Tho* are small but not zero,
17 € A" 6 — ¢
NORIINE R LT
2 s 2 s Gg—(————~—~1-2 Re {Zoa(1— | Tor |24 Ton— T }
bt = e {\paF - ) 33 o ZotZal _ (39)
. . (1 —"\/Go ReR)2+(\/GoImR)2
From the input and output conditions shown in Fig. 3,
we have where
N = gno{ I OHAD T Ty 67
a1 = - a1 + Taiar, a* = Teo*a,s® R ¢ {e e
Lo+ Za + gin(OHHAD T FTyp¥em it (40)
brl = Pblbil; brz* = Fb2*bi2* (34) Af
, . . tan ¢ = — tanh #d. (41)
where the I''s are the reflection coefficients: b}
, = u, y = é”_i_é . (35) For a numerical example, let
Zo+Z VA Z
T4 vt 4 Zo' = Zo' = 304, l c[ = 3.5upF, co= SuuF
There are altogether eight equations with eight un- ; . _ -
known quantities a.i, a2, - -+, b, beo*. The simul- o1 % wp = 670me, =18, n = 16.
taneous equations can be solved by the standard method Then, from (11) and (31), we obtain
of algebra. Neglecting the higher-order terms of § and
of the reflection coefficients, we have, for example, 5o = 0.11 o = 0.006.
M A e A=AV
— e Yl m“ €ai
2 a
By = 6 01 1 — (36)
. (Al" + A" € A — x3n> R ()\1" + A" L At — m) P
2 8 2 Ao 2 8 2 Ag®

We define the power gain G of the amplifier to be the
ratio of the power dissipated in the load at w; to the
available power from the generator:

Z
G = |b]Re {—”f_
| Zon|

Y /L_L
b1 bl | 4ReZu1

(1~ | Twi?

37

Inserting these values in (38), we get
Go = 8.7db for A6 =0
Go = 5.7db for A8 = 6°

which can be compared with the second experimental
result by Engelbrecht.? If | R| =0.1, because of the de-

3 R. S. Engelbrecht, “Nonlinear-Reactance (Parametric).TraveL
ing-Wave Amplifiers for UHF,” Presented at the 1959 Solid-State
Circuits Conf., Philadelphia, Pa., February, 1959.
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Fig. 4—Equivalent circuit of semiconductor
diode with noise voltages,

nominator of (39), G varies from 6.6 db to 11.5 db,
when Af =0, depending on the phase of R.

It should be recognized that (38) and (39) are the re-
sults of a three-frequency analysis. If the other side-
bands are capable of propagating, the gain may be re-

duced.

NoiseE FiGurRE CALCULATION

For the calculation of the noise figure, we must con-
sider the noise voltages ¢; and e; due to the spreading
resistance of the semiconductor diode. On the other
hand, for simplicity, we neglect the losses, hence the
noise generated in the two terminal pair networks (a)
and (b) in Fig. 2.

The equivalent circuit of the diode is shown in Fig. 4.
Replacing v; and »* in (2) by v1—e1 and v2* —e;* respec-
tively, we have the matrix representation of this equiva-
lent circuit. Using this representation in a similar way
as for (8), we get the relation

B=TA+4+ KN (42)
between the input vector 4 and the output vector B of
the basic section of the amplifier, where 1" is given by

(10) and
N = [el ]
62*
I~ 1

3— VZo e {jw1€o +7 (w12002 — wiws

<O
fcl?

) 4>}

1 c
2 V Zoo * ! Py {14 j(ws — wi)cor},

1
“—2‘ V' Zo'el® {jwlco +r (w12602 — wiws

R c*
ey V' Z o e, ey {1+ (e — wi)cor},

Next, we shall consider the amplifier with # sections.
For the mth section, ¢ is replaced by ce2" D and K
becomes

I om— IK] 0—m+ 1

e~ 1% 0
I: 0 e""l’]'

Therefore, the output vector of the amplifier is

B = (Ion—lTIB—rA—l)(Ion—ZTIG—n+2) c e (IoTIa—l)TA

where

Jg = (44)

+ D0 I L) (Tt T n+2) - - -

m=1

. (I o™ TI g—m) T P KT o—m-HNm

= IpTy A + Y I¢Te I KT N,

m=1

(45)

where A4 is the input vector of the amplifier and Na rep-
resents the matrix V with the noise voltages en: and
em2™ of the mth diode. Using (27), we rewrite (45) in the
form

B = Ia"{ z )\k"Ak(fIkQ~1A)
k

+ 20 2N A (A KT N, L (46)

m=1 k

e [
V' Zo e e, = {1+ j(w: — wi)eor}
. c
- \/ZOl’eioljwl ‘2“ {1 +j(w2 - w1)607’}
(43)

)
.

TR .
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NIH N]r—a N]»—n Nl)—n
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Substituting (30) and (32) in (46), we obtain

A A" A € A" — A
b = ¢ints - @il
2 s 2

M — A" & ‘o1 ¢ g g o
—— ey —— —_— — e ai * e o
2 J ) w2 i 6‘ ’
n )\ ln——m + )\an—m € }\ ln—m i )\ 3n—m

PR S M),

2_3 2 5 2 '
M N b Jen © m}

2 ) Wy l 4 l
+o ] e

with similar equations for the other components, where
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where

k=Boltzmann’s constant,
Af=the noise band width of the amplifier,
T'=standard noise temperature, and
T, =the equivalent noise temperature of the spread-
ing resistance.

If {7\1[ 2”>>[ 7\3I 2= as is usually the case, (49) becomes

l)\1|2n 502 Wi

— 2 RTAf + ET,Afr

52 wa
1 {ao2< -
. —\c
26— o) Loz \ "

K3k
2465, 01
Col c{ w1w21/_ V' Zo'Zod } . (30)
(O8]

e

No = GokTAf+

1 ) (Wit 20’ X wiweZod)
52

— - roq ¢ —
mi1 _2‘]'601\/Z01,3~701 Coezmﬁpeml + __2_ e(2—m))0pgm2*
Lo . ¢ .
el Yy Jo1v/ Zoi €% 4 coe™re,, + 3 e@mitrg,, ¥
Ie—-lK]e»—m—Fle = ;—'— % (48)
e [4 . i
’m,z* —?]w2\/202’*3192 {_.2_ e(m-2)19pem1 + Coe—jmopemz*}
1, S ¥ )
'}’}’Lrg* "E‘](*’Z\/Zozl*e—]ez ? e(m—~2):/(91,em1 - coe_‘]mapemz*

For simplicity, hereafter we shall confine ourselves to
the case in which we obtained (38): 0 =01=03 and the
reflection coefficients are all zero. Then, from (47), the
noise output power becomes

Z\T() = bdbd* % ngTAf
[ n\ 2 S 2
+<l)\1l }Ml)—o——ngAf

5 3
+ kTTAfr[—i—G:}iz;Zn‘l’ {:{2:}?)

| o]

n ) (01220t + w1 ")

2
. {_50_ <602_|_
52
2005, ol o] e 1/_w_l \/_-zm'zoz'}
62 w9
i—lmsl"{< \ lcl“’)
STl W

AG? i
. (wf“’Zol’ - *5—26012201/ — ?2601032202'>

2065 ot
- ° col ¢l www‘/—— \/Zm'Zozl}:‘
52 we

1
T3

(49)

In this case,

1 8o
Go FZ IM{Z"E;‘
Dividing N, by GokTAf, we obtain the noise figure Fo.

w1 Ty rZowi’c’ ws Zoo'
2 )
¢ 2 T 206 - o) w1 Zo

-(1+‘°'2>+35~“—“—l o T} (s1)

4cy? do Co w1 ¥V Zo'
For a numerical example, we use the same values
described in the previous section, and assume that
T,=T. Then (54) gives

Fo = 3.3db for A9 == 0
Fo = 4.5db for A8 = 6°,
APPENDIX

Theorems 1, 2, and 3 will be proved.
From (21), the determinant of (7% —X\.I) vanishes:

det (T9 — M) = 0. (52)
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Since det T30, Ax#0. From these relations, we have
det (To - 7\k[) det (271T%) = det (Teﬂ“lTa — i\kﬂ_lTe)
= det (le - ku—lT{a)

1
= det (Q‘li\ﬁ det (i— I — T6> =0,
k

The final result is

1
det (Te —— I> = 0.
A

From (53), it follows that there is always an eigenvalue
1/ of T, corresponding to an eigenvalue A; to Ty,
(Theorem 1),
We shall use the same subscript for the corresponding
solutions of the eigenvalue problems of the two circuits:
1

>\k::'..—"'
k

(53)

(54)

Multiplying (21) by Q'7%4; from the right and using
(19) and (20), we obtain

1\ .
()\z - —5\—) A4, =0, (55)

k
If A=£1/As, (55) shows that A, 014,=0. In the non-
degenerate case, \;5# 1/}, for k54]. Thus, we obtain the
desired orthogonality relation (Theorem 2):

January

A014, =0, k=1 (56)

In the degenerate case, k7! does not necessarily mean
that N;»1/\;. However, we are justified in assuming
(56), for it is always possible to introduce the degenerate
eigenvectors in such a way as to secure the ortho-
gonality.

Next, we expand Q4+ by the eigenvectors 4 ;, where
the symbol +indicates the complex conjugate transpose:

Q/Lc—" = Z O(zAz.

Multiplying by 4,2 from the lelt and using (56), we
have

fikfik"' = ak/IkQ_lAk.

Since 4,70, the left hand side of the above equation is
not zero. Thus we conclude that (Theorem 3):

Ay t4; # 0. (57
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Action of a Progressive Disturbance on a Guided

Electromagnetic Wave*
j. C. SIMON?

1. INTRODUCTION
4.
)& PROBLEM often encountered in wave physics

concerns the interaction of various types of
waves, and the energy transfer from one wave
to another.

In the particular case of waves of the same nature,
“modes” can be distinguished in such a way that a wave
can be represented as a sum of these modes. Their essen-
tial character is that the energy associated with each

* Original manuscript received by the PGMTT, May, 1959;
revised manuscript received, September 25, 1959,
F 1 Départment de Physique Applique, C.S.F., Orsay, S.0.,
rance,

does not vary with time. It is also said that these modes
are not “coupled.” This, for instance, is the case of
waves guided in an electric waveguide, of mechanical
vibration in a bar, and of energy levels in quantum
physics.

Although this possibility of decomposition in “normal
modes” corresponds to particular physical conditions,
it has made it possible to deduce general notions of a
fundamental character essential to the physicist. In the
most general case, the normal modes are said to be
coupled that is the energy passes from one to the other,
so much that this decomposition into normal modes
appears to be indispensable in deducing physical con-
cepts.



